教学设计方案
【必备】教学设计方案范文锦集7篇
为了确保事情或工作有效开展,常常需要提前准备一份具体、详细、针对性强的方案,方案是阐明行动的时间,地点,目的,预期效果,预算及方法等的书面计划。方案应该怎么制定才好呢?以下是小编整理的教学设计方案7篇,仅供参考,欢迎大家阅读。
教学设计方案 篇1一、教学内容:九年义务教育六年制小学数学人教版第十二册第33-34页的内容。
二、教学目标:
知识与技能:理解并掌握圆柱体的侧面积和表面积的计算方法,能结合具体情境,灵活运用计算方法解决实际问题。
过程与方法:经历圆柱表面积、侧面积计算方法的探索过程,培养学生自主探索、合作交流的能力。
情感态度与价值观:学生获得积极成功的情感体验,体会数学与生活的密切联系。
重点:理解并掌握求圆柱体表面积、侧面积的计算方法
难点:能结合具体情境,灵活运用圆柱侧面积、表面积的计算方法解决实际问题。
教具:圆柱形模型、剪刀
三、教学过程
(一)创设生活情景,引入新课
我根据学生喜欢喝饮料的爱好,创建生活情景,“同学们都喜欢喝饮料,那么你们知道做这样的一个饮料罐至少需要多少的铁皮吗?怎样计算?” 这节课,我们就来一起学习圆柱的表面积(板书课题) (设计意图:数学来源于生活,又应用于生活,我利用学生的生活实际设疑引入新课,很容易激发学生的学习兴趣,进而求知,解决问题。)
(2)引导探究,学习新知
1、认识圆柱的表面
师:我们来做一个“饮料罐”,该怎样做? ?
生:要做一个圆筒,和两个完全相同的圆。
师:用什么形状的纸来做卷筒呢? 同学们说的意见不一致时,我适时引导,你们动手剪一剪不就知道了吗? 每一组的同学都剪开自己带来的圆筒,有的得到了长方形,有的得到了平行四边形,也有的得到了正方形。
(设计意图:动手操作,使学生对圆柱各部分的组成有了完整的认识,培养了学生的创造能力,同时也揭示了知识间的内在联系,实现了知识的转化和迁移。)
2、探究圆柱侧面积的计算。
师:我们先来研究把圆筒剪开展平是一个长方形的情况,求这个饮料罐要用铁皮多少?就是求什么? 学生观察、思考、议论。
生1:求饮料罐铁皮用料面积就是求:圆面积×2+长方形面积。
生2:也就是求圆柱体的表面积。
师:这两位同学说得对吗?要求圆柱体的表面积要知道什么条件? 生3:我看只要知道圆的半径和高就可以了。
师:我们来听听这位同学是怎么想的。
生3:长方形的长与圆的周长相等,长方形的宽与圆柱的高相等,所以只要知道圆的半径就可以求出长方形的长,也可以求出圆的面积。 生4:我觉得知道圆的直径和高也可以了。
生5:我还觉得知道圆的周长和高也行。
师:这三位同学都说得很好,那么圆柱的侧面积该怎样求?
生6:因为长方形面积=长×宽 所以圆柱的侧面积=底面周长×高
师:如圆柱展开是平行四边形或正方形,是否也适用呢?学生分组动手操作,动笔验证,得出了同样的结论。
小结:同学们会动手、动脑,巧妙地把圆柱的侧面转化为平面图形,圆柱的侧面展开后不论是长方形、正方形或平行四边形,圆柱的侧面积都等于它的底面周长乘高。
师板书:圆柱侧面积=底面周长×高 S侧=ch 出示例1让学生独立计算出圆柱的侧面积,一生板演,集体订正。
(设计意图:学生在教师创设的情境中,分组合作得出结论,充分调动了学生学习的积极性,同时个性也得到发展。)
3、探究圆柱表面积的计算
师:我们知道了圆柱侧面积的计算了,那么它的表面积该怎样算呢? (1) 出示例2
分组讨论例2中给了哪些条件?求什么问题?它的表面积应包括几个面?怎样解答。
(设计意图:学生已掌握了圆面积和侧面积的计算方法,教学圆柱的表面积时,让学生自学交流就能掌握方法。)
(2) 教学例3
师:在实际生活中,求圆柱的表面积的计算方法有着广泛的应用,我们一起来看例3,应该算几个面?为什么? 学生做完后汇报
师:通过计算,你有哪些收获?
生5:我知道了,做这个无盖水桶要用铁皮多少平方厘米就是求一个侧面积和一个底面积的和。
生6:在得数保留时,我觉得应该用进一法取近似值,因为用料比实际多一些,因为有损耗,所以要用进一法。让学生看34页,看“注意”后的一段话。
(设计意图:让学生从生活实际出发,充分讨论,理解进一法,明确在什么情况下用“进一法”取近似值,培养学生实际应用意识。)
(3)巩固练习,灵活运用
1、出示牛奶罐、无盖水桶、水管等实物图,引导学生观察思考:计算制作这些物体所用铁皮的面积,各是求哪些面的总面积?
小结:计算圆柱的表面积要根据具体实物分别处理,要学会运用新学的知识合理灵活地解决生活中的实际问题。
2、综合练习(只列式,不计算)
(1)用铁皮制作圆柱形的通风管10节,每节长9分米,底面周长3.5分米,至少需要铁皮多少平方米?
(2)砌一个圆柱形水池,底面直径2.5米,深3米,在池的周围与底面抹上水泥,抹水泥的面积是多少平方米?
(3)一个圆柱形的油桶,底面半径4分米,高1米2分米,制这个油桶至少要用铁皮多少平方米?
(设计意图:通过这种练习进一步培养学生根据实际情况灵活运用知识的能力。)
3、实践与应用
小组合作测量计算:制作所带的圆柱形实物的用料面积,先让学生讲讲需要测量哪些数据,以及测量方法,再进行测量和计算。
(设计意图:培养学生合作意识和动手操作能力,锻炼学生用所学知识解决生活中的实际问题,使学生感受数学就在身边,不断提高应用数学的意识。)
(4)全课小结 在实际生活中,计算圆柱的表面积,要根据具体情况灵活掌握,如计算油桶的表面积是求侧面积与两个底面积的总和;无盖水桶的表面积是求侧面积加上一个底面积;水管-的表面积只求侧面积,另外,在实际中使用的材料都要比计算得到的结果多一些,所以都要采用“进一法”取近似值。
板书
圆柱的表面积
圆柱的表面积=两个底面积+侧面积
圆柱的侧面积=底面周长× 高
长方形的面积= 长 × 宽
教学设计方案 篇2一、教材分析:
函数有三种表达方式,其中最为重要的就是函数解析式法。熟练解决这一问题对后续学习非常重要,所以本节的学习必须让学生完全突破。
1.要求学生明确确定 ……此处隐藏8024个字……。
2.找出哪些是判断某一件事情的句子?
学生答:(1),(2),(4),(6)。
3.教师给出命题的概念,并举例。
命题:判断一件事情中,每句话都判断什么事情.所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清.在数学课中,只研究数学命题,请学生举几个数学命题的例子,每组再选一个同学说.(不要让说过的再说)
如:的句子,叫做命题,分析(3),(5)为什么不是命题.
教师分析以上命题
(1)对顶角相等。
(2)等角的余角相等。
(3)一条射线把一个角分成两个相等的角,这条射线一定是这个角的平分线。
(4)如果a>0,b>0,那么a+b>0。
(5)当a>0时,|a|=a。
(6)小于直角的角一定是锐角。
在学生举例的基础上,教师有意说出以下两个例子,并问这是不是命题。
(7)a>0,b>0,a+b=0。
(8)2与3的和是4。
有些学生可能给与否定,这时教师再与学生共同回忆命题的定义,加以肯定,先不要给出假命题的概念,而是从“判断”的角度来加深对命题这一概念的理解。
4.分析命题的构成,改写命题的形式。
例两条直线平行,同位角相等.
(l)分析此命题的构成,前一部分是后一部分成立的条件,后一部分是在前一部分条件下所得的结论.已知事项为“题设”,由已知推出的事项为“结论”。
(2)改写命题的形式。
由于题设是条件,可以写成“如果……”的形式,结论写成“那么……”的形式,所以上述命题可以改写成“如果两条平行线被第三条直线所截,那么同位角相等。”
请同学们将下列命题写成“如果……,那么……”的形式,例:
①对顶角相等。
如果两个角是对顶角,那么它们相等。
②两条直线平行,内错角相等。
如果两条直线平行,那么内错角相等。
③等角的补角相等。
如果两个角是等角,那么它们的补角相等。(注意不仅仅限于两个角,如果多个角相等,它们的补角也相等。)
以上三个命题的改写由学生进行,对(2)要更改为“如果两条平行线被第三条直线所截,那么内错角相等。”
提示学生注意:题设的条件要全面、准确.如果条件不止一个时,要一一列出。
如:两条直线相交,有一个角是直角,则这两条直线互相垂直,可改写为:
“如果两条直线相交,而且有一个角是直角,那么这两条直线互相垂直。”
二、分析命题,理解真、假命题
1.让学生分析两个命题的不同之处。
(l)若a>0,b>0,则a+b>0
(2)若a>0,b>0,则a+b<0
相同之处:都是命题.为什么?都是对a>0,b>0时,a+b的和的正负,做出判断,都有题设和结论。
不同之处:(1)中的结论是正确的,(2)中的结论是错误的。
教师及时指出:同学们发现了命题的两种情况。结论是正确的或结论是错误的,那么我们就有了对命题的一种分类:真命题和假命题。
2.给出真、假命题定义
真命题:如果题设成立,那么结论一定成立,这样的命题,叫做真命题。
假命题:如果题设成立,结论不成立,这样的命题都是错误的命题,叫做假命题。
注意:
(1)真命题中的“一定成立”不能有一个例外,如命题:“a≥0,b>0,则ab>0”。显然当a=0时,ab>0不成立,所以该题是假命题,不是真命题。
(2)假命题中“结论不成立”是指“不能保证结论总是正确”,如:“a的倒数一定是”,显然当a=0时命题不正确,所以也是假命题。
(3)注意命题与假命题的区别.如:“延长直线AB”.这本身不是命题.也更不是假命题。
(4)命题是一个判断,判断的结果就有对错之分.因此就要引入真假命题,强调真假命题的大前提,首先是命题。
3.运用概念,判断真假命题。
例请判断以下命题的真假。
(1)若ab>0,则a>0,b>0。
(2)两条直线相交,只有一个交点。
(3)如果n是整数,那么2n是偶数。
(4)如果两个角不是对顶角,那么它们不相等。
(5)直角是平角的一半。
解:(l)(4)都是假命题,(2)(3)(5)是真命题.
4.介绍一个不辨真伪的命题.
“每一个大于4的偶数都可以表示成两个质数之和”。(即著名的哥德巴赫猜想)
我们可以举出很多数字,说明这个结论是正确的,而且至今没有人举出一个反例,但也没有一个人能证明它对一切大于4的偶数正确.我国著名的数学家陈景润,已证明了“每一个大于4的偶数都可以表示成一个质数与两个质数之积的和”.即已经证明了“1+2”,离“1+1”只差“一步之遥”.所以这个命题的真假还不能做最好的判定。
5.怎样辨别一个命题的真假。
(l)实际生活问题,实践是检验真理的唯一标准。
(2)数学中判定一个命题是真命题,要经过证明。
(3)要判断一个命题是假命题,只需举一个反例即可。
三、总结
师生共同回忆本节的学习内容。
1.什么叫命题?真命题?假命题?
2.命题是由哪两部分构成的?
3.怎样将命题写成“如果……,那么……”的形式。
4.初步会判断真假命题.
教师提示应注意的问题:
1.命题与真、假命题的关系。
2.抓住命题的两部分构成,判断一些语句是否为命题。
3.命题中的题设条件,有两个或两个以上,写“如果”时应写全面。
4.判断假命题,只需举一个反例,而判断真命题,数学问题要经过证明。
四、作业
1.选用课本习题。
2.以下供参选用。
(1)指出下列语句中的命题.
①我爱祖国。
②直线没有端点。
③作∠AOB的平分线OE。
④两条直线平行,一定没有交点。
⑤能被5整除的数,末位一定是0。
⑥奇数不能被2整除。
⑦学习几何不难。
(2)找出下列各句中的真命题。
①若a=b,则a2=b2。
②连结A,B两点,得到线段AB。
③不是正数,就不会大于零。
④90°的角一定是直角。
⑤凡是相等的角都是直角。
(3)将下列命题写成“如果……,那么……”的形式。
①两条直线平行,同旁内角互补。
②若a2=b2,则a=b。
③同号两数相加,符号不变。
④偶数都能被2整除。
⑤两个单项式的和是多项式。
文档为doc格式