《数学之美》读书笔记

时间:2024-05-14 10:47:57
《数学之美》读书笔记

《数学之美》读书笔记

读完一本经典名著后,相信你一定有很多值得分享的收获,让我们好好写份读书笔记,把你的收获和感想记录下来吧。但是读书笔记有什么要求呢?下面是小编精心整理的《数学之美》读书笔记,希望对大家有所帮助。

《数学之美》读书笔记1

读完本书,第一感受:次奥!原来数学如此多的原理模型概念都可以用去解决各种IT技术问题啊。特别是语言识别和自然语言处理这类问题完全就是建立在数学原理之上的。总之,这本书就是用非常深入浅出的话去说明如何用数学方法去解决计算机的各种工程问题。这是一本讲道,而不是术的书。 要完全读懂这本书,我觉得至少需要掌握这三门课:高等数学,离散数学,还有概率论与数理统计。唉..我当初数学学得太水了,还挂了高数啊...有好的概念没看懂,以后有时间在好好看吧。如果想搞计算机研究的话,数学基础必不可少,别总在抱怨各种数学课上的东西一辈子都用不着。

发现作者对人类自然发展的认识非常深,其从语言,文字,数学的产生发展,信息的传播记录得出了这个结论:信息的产生传播接收反馈,和今天最先进的通信在原理上没有任何差别。就算是科学上最高深的技术,那也是模拟我们生活中的一些基本原理。

我们今天使用的十进制,就是我们扳手指扳了十次,就进一次位。而玛雅文明他们数完了手指和脚指才开始进位,所以他们用的是二十进制。实际上阿拉伯数字是古印度人发明的,只是欧洲人不知道这些数字的真正发明人是古印度,而就把这功劳该给了“二道贩子”阿拉伯人。

语言的数学本质

任何一种语言都是一种编码方式,比如我们把一个要表达的意思,通过语言一句话表达出来,就是利用编码方式对头脑中的信息做了一次编码,编码的结果就是一串文字,听者则用这语言的解码方法获得说话者要表达的信息。

自然语言处理模型

计算机是很笨的,他们唯一会做的就是计算。自然语言处理在数学模型上是基于统计的,说一个句子是否合理,就看看他出现的可能性大小如何,可能性就是用概率来衡量,比如一个句子,出现的概率为1/10^10,另一个句子出现的概率为1/10^20,那么我们就可以说第一个句子比第二个句子更加合理。当然这要求有足够的观测值,他有大数定理在背后支持。

最早的中文分词方法

这句话:“同学们呆在图书馆看书”,如何分词?应该是这样:同学们/呆在/图书馆/看书.最先的方法是北航一老师提出的查字典方法,就是把句子从左道右扫描一遍,遇到字典里面出现的词就标示出来,遇到复合词如(北京大学)就按照最长的分词匹配,遇到不认识的字串就分割成单个字,于是中文的分词就完成了。但是这只能解决78成的分词问题,但是“像发展中国家”这种短语它是分不出来的。后来大陆用基于统计语言模型方法才解决了。

隐含马可夫模型(没这么看懂)

一直被认为是解决打多数自然语言处理问题最为快速有效的方法,大致意思是:随机过程中各个状态的概率分布,只与他的前一个状态有关。比如对于天气预报,我们只假设今天的气温只与昨天有关而与前天没有关系,这虽然不完美,但是以前不好解决的问题都可以给出近视值了。

一个让我印象深刻的观点:

小学生和中学生其实没有必要花那么多时间去读书,其觉得最主要的是孩子们的社会经验,生活能力,和那时候树立起来的志向,这将帮助他们一生。而中学生阶段花很多时间比同伴多读的课程,在大学以后可以用非常短的时间就可以读完。因为在大学阶段,人的理解能力要强很多,比如中学要花500小时才能搞明白的内容,大学可能花100小时就搞定了。学习和教育是一个人一辈子的事情,很多中学成绩好的人进入大学后有些就表现不太好了,要有不断学习的动力才行。

余弦定理和新闻分类

我在新浪干过一年多新闻,这篇认真看了一篇,很吃惊原理cos x与新闻分析也有关系啊。google的新闻服务是由计算机自动整理分类的。而传统的媒体如门户网站是让编辑读懂新闻,找到主题,再分类分级别的,真苦逼啊...计算机自动分类原理是这样:如一篇新闻有10000个词,组成一个万维向量,这个向量就代表这篇新闻,可以通过某种算法表达这个新闻主题的类型,如果两个向量的方向一致,说明对应的新闻用词一致,方向可用夹角表示,夹角可用余弦定理表示,所以当夹角的余弦值接近于1时,这两篇新闻就可以归为一类了。

没看懂的东西:

布尔代数:布尔代数把逻辑学和数学合二为一,给了我们一个全新的视角看世界...

网络爬虫的基本原来是利用了图论的广度优先搜索和深度优先搜索...

搜索引擎的结果排名用了稀疏矩阵的计算...

地图最基本的计算是利用了有限状态机和图论的最短路径...

密码学原理,最大熵模型,拼音输入法的数学模型,布隆过滤器,贝叶斯网络等等...

任何事物都有它的发展规律,当我们认识了规律后,应当在生活工作中遵循规律,希望大家透过IT规律的认识,可 以举一反三的总结学习认识规律,这样有助于自己的境界提升一个层次。

任何问题总是能找到相应的准确数学模型,一个正确的数学模型在形式上应当是简单的,一个好的方法在形式上应当也是简单的。简单才是美。

《数学之美》读书笔记2

很多人都觉得,数学是一个太高深、太理论的学科,不接近生活,对我们大多数人来说平时也根本用不到,所以没必要去理解数学。但事情真的是这样吗?

其实不然,数学一直渗透在我们生活的各个方面,尤其是在今天这个信息时代,很多简单朴素的数学思想,能发挥一般人很难想象的巨大作用。比如,计算机处理自然语言,用到的最重要工具是统计学的思想;计算机对新闻内容的分类,依靠的是数学里的余弦定理;而电子电路的基本逻辑,则来源于仅有0和1两个数字的布尔代数。

在《数学之美》里,吴军用自己在工作中使用数学的亲身经历,为我们展现了数学的重要性,以及他对数学之美的理解。吴军是“得到”App专栏《吴军的谷歌方法论》的主理人。曾先后供职于谷歌和腾讯,是著名的自然语言处理专家和搜索专家。同时,他还是位畅销书作家,除了这本《数学之美》以外,还写过《文明之光》《智能时代》《浪潮之巅》等多本畅销书。

《数学之美》读书笔记3

我是在读了吴军博士的《浪潮之巅》之后,发现推荐了《数学之美》这本书。我到豆瓣读书上看了看评价,就果断在当当上下单买了一本研读。本来我以为这是一本充满各种数学专业术语的书,读后让我非常震撼的是吴军博士居然能用非常通俗的语言将自然语言处理等高深理论解释的相当简单。在李开复博士之后,吴军博士又成为了目前备受瞩目的具有深厚技术背景的作家。对于我来说,读这本书有扫盲的功效,让我知道了很多以前不知道的东西。我的想法是在研究生阶段,不只局限于导师的研究方向,通过更加广泛的涉猎知识,去寻找一个自己喜欢的研究领域 ……此处隐藏10293个字……异,然后修改数据,每月1日都要加班加点,工作量很大,这是从术上解决问题。后来找到了产生差异的原因是会计核算时的利息调整造成的,把这些数据接过来进行相应冲减后差异就消失了,业务人员也不用来加班了,这才是从道上解决问题。

其二,是在做中文网页排名时提到的从业界成功的秘诀之一:“先帮助用户解决80%的问题,再慢慢解决剩下的20%的问题。许多时候做事失败,不是因为人不够优秀,而是做事的方法不对。一开始追求大而全的解决方案,之后长时间不能完成,最后不了了之”。我们在做项目时也是一样,业务有时要的功能非常急,可能有些功能也实现不了(比如系统响应时间长、查询明细不能支持省行等)。这时我们就要将焦点关注在那些可以实现的80%的功能上,哪怕刚刚上线的系统界面丑点,操作复杂点,反应速度慢点,但是至少业务有可用的系统,剩下时间再去优化那剩下的20%。这样可以帮助我行抢占先机,在与同行业的竞争中取得主动。如果等待我们把所有的细节都搞清楚再动手开发,力求完美,那么很可能系统能够上线的时候业务已经不需要了。

数学之美,也就是简单之美。希望大家能够喜欢数学,喜欢数学之美。

《数学之美》读书笔记7

最近看了这本《数学之美》,不得不感叹一句,可惜早已身不在起点。

我读书的时候,数学成绩一直都很好,虽然离开学校已经10多年,自觉当初的知识还是记得很多,6~7年前再考线性代数和概率论,还是得到了很高的分数。不过我也和大部分人一样,觉得数学没有太多用处,特别是高中和大学里面学的,那些三角函数,向量,大数定律,解析几何,除了在考试的题目里面用一下,平时又有什么地方可以用呢?

看了《数学之美》,惊叹于数学的浩瀚和简单,说它浩瀚,是因为它的分支涵盖了科学的方方面面,是所有科学的理论基础,说它简单,无论多复杂的问题,最后总结的数学公式都简单到只有区区几个符号和字母。

这本书介绍数学理论在互联网上的运用,平时我们在使用互联网搜索或者翻译功能的时候,时常会感叹电脑对自己的了解和它的聪明,其实背后的原理就是一个个精美的算法和大量数据的训练。那些或者熟悉或者陌生的数学知识(联合概率分布,维特比算法,期望最大化,贝叶斯网络,隐形马尔可夫链,余弦定律,etc),一步步构建了我们现在所赖以生存的网上世界。

之所以觉得自己早已身不在起点,是因为上面这些数学知识,早已经不在我的知识框架之内,就算曾经学过,也不过是囫囵吞枣一样的强记硬背,没有领会过其中的真正意义。而今天想重头在来学一次,其实已经不可能了。且不说要花费多少的精力和时间,还需要的是领悟力。而这一些,已经不是我可以简单付出的。

不像物理、化学需要复杂的实验来验证,很多数学的证明,几乎只要有一颗聪明的头脑和无数的草稿纸,可是光是这颗聪明的头脑,就可以阻拦掉很多人。有人说多读书就会聪明,我不否认,书本的确会提供很多知识,可是不同的人读同一本书也会有不同的收货,这就限制于每个人的知识框架和认知水平。就如一个数学功底好过我的人,看这本书,就会更容易理解里面的公式和推导出这些公式的其他运用点,而我,只能站在数学的门口,感叹一句,它真的好美吧。

当然,我暂时无法在实际生活中运用这些数学公式,可是书中提到的一些方法论,还是很有帮助的

1)一个产业的颠覆或者创新,大部分来自于外部的力量,比如用统计学原理做自然语言处理。

2)基础知识和基础数据是很重要性,只有足够多和足够广的数据,才可以提供有效的分析,和验证分析方法的好坏。

3)先帮用户解决80%的问题,在慢慢解决剩下的20%的问题;

4)不要等一个东西完美了,才发布;

5)简单是美,坚持选择简单的做法,这样会容易解释每一个步骤和方法背后的道理,也便于查错。

6)正确的模型也可能受噪音干扰,而显得不准确;这时不应该用一种凑合的修正方法加以弥补,而是要找到噪音的根源,从根本上修正它。

7)一个人想要在自己的领域做到世界一流,他的周围必须有非常多的一流人物。

《数学之美》读书笔记8

这本书一共31章,主要介绍了这些数学方法:统计方法、统计语言模型、中文信息处理、隐含马尔科夫模型、布尔代数、图论、网页排名技术、信息论、动态规划、余弦定理、矩阵运算、信息指纹、密码学、搜索技术、数学模型、最大熵模型、拼音输入法、贝叶斯网络、句法分析、维特比算法、各个击破算法等。从第一章开始其明了幽默的语言就深深的吸引了我,让我觉得如果早一点看这本书,也许数学之于我就是另一番天地。

第一章里作者从原始人类的通信方式开始入手,人类最早利用声音进行的通信依赖于开篇给出的"编码-传输-解码"的基本原理,指出原始人的通信方式和今天的通信方式没什么不同,这世界上近现代最普遍的原理大部分都在人类发展的历史上被无意识的使用着。

第六章信息论给出了信息的度量,它是基于概率的,概率越小,其不确定性越大,信息量就越大。引入信息量就可以消除系统的不确定性,同理自然语言处理的'大量问题就是找相关的信息。信息熵的物理含义是对一个信息系统不确定性的度量,这一点与热力学中的熵概念相同,看似不同的学科之间也会有着很强的相似性。事务之间是存在联系的,要学会借鉴其他知识。

这本书里也能找到不少在学的课程知识,如大学专业课里,数电总是要比模电简单不少,而自然界里大部分的信号都属于模拟信号。所谓模拟信号,是指从时间和数值两种维度上看来都是连续变化的信号。在实际电路中,模/数转换是一个很重要的过程,将预处理的模拟信号经过模/数变换为数字信号,然后进行数字信号处理。而数字化处理有很多优点,比如功能强大、抗干扰能力强、易于传输等。

简而言之,如果没有数学,就没有数字信号处理和传输的概念,而数字信号传输在当下大规模的集成电路里是必不可少的,这是通信成功的基本要求。

作者把生活中遇到的复杂的问题,以简单清晰,直观的模型或者公式展现出来。我们可能过于注意生活中的种种奇妙现象,往往忽略了追求其理论逻辑的演绎,而这也是大部分问题的主要根源。

罗素曾经说过:"数学,如果正确地看,不但拥有真理,而且也具有至高的美";爱因斯坦也曾说过:"纯数学使我们能够发现概念和联系这些概念的规律,这些概念和规律给了我们理解自然现象的钥匙。"数学在所有科学领域起着基础和根本的作用。"哪里有数,哪里就有美".在这里,我也想把《数学之美》真诚推荐给每一位对自然、科学、生活有兴趣有热情的朋友,不管你是从事职业,读一读它,会让你受益良多。

吴军老师在《数学之美》中提到:"这本书的目的是讲道而不是讲术。很多具体的搜索技术很快会从独门绝技到普及,再到落伍,追求术的人一辈子工作很辛苦。只有掌握了搜索的本质和精髓才能永远游刃有余".回到我们日常的生活中,需要学习的东西、技术太多太多,如果一味地只为去追技术的脚步,那么我们也会很累很累。然而基本的原理却是没有怎么变化的。只见森林,不见树木,难免迷失;站在高处向下看,也许我们一直看不到底,但是站在底处却是可以看见底的。

《《数学之美》读书笔记.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式